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SUMMARY

An efficient, decoupled direct method for calculating the first order
sensitivity coefficients of homogeneous, batch combustion kinetic rate equa-
tions is presented. 1In this method the ordinary differential equations for the
sensitivity coefficients are solved separately from, but sequentially with,
those describing the combustion chemistry. The ordinary differential equations
for the thermochemical variables are solved using an efficient, implicit method
(LSODE) that automatically selects the steplength and order for each solution
step. The solution procedure for the sensitivity coefficients maintains accu-
racy and stability by using exactly the same steplengths and numerical approxi-
mations. The method computes sensitivity coefficients with respect to any
combination of the initial values of the thermochemical variables and the three
rate constant parameters for the chemical reactions. The method is iliustrated
by application to several simple problems and, where possible, comparisons are
made with exact solutions and those obtained by other techniques.

INTRODUCT1ON

The modeling of a homogeneous, batch combustion system requires the solu-
tion of first order ordinary differential equations (ODE's) for thermochemical
variables such as composition, temperature, and density. The chemistry is
represented by a system of NR simultaneous reactions among NS different spe-
cies. A1l chemical reactions considered in this work are gas-phase elementary
reactions. The jth chemical reaction can be written in the general form

NS kJ NS
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where wv34' and v»44" are the stoichiometric coefficients of species 1

(with chemical symbol X4) in reaction J as a reactant and as a product,
respectively.

The time rate of change of species 1 can be written as (refs. 1 and 2)

do1
el fi({o 1 Top) 5 1,k =1, NS (2)

where o4 1s the mole number of species 1 (i.e., mole 1/g mixture), t

the time, T the temperature, and p the mixture mass density. The net rate
of formation (f3) of species 1 due to all forward and reverse reactions is
given by
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where the molar forward (Ry) and reverse (R_j) rates per unit volume for
reaction j are given by
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The forward rate constant (kj) is given by the modified Arrhenius
expression

ky = AJT"j exp (-Ej/R1) (6)

where Ay, ny, and E are constants and R 1is the universal gas constant.
Each reaction may be either reversible (bidirectional) or irreversible (uni-
directional). For reversible reactions the reverse rate constants (k_4) are
calculated from kj and the concentration equilibrium constants (Kj) using

the principle of detatled balancing (ref. 3)

k_j = kj/Kj (7)

where K3 1is a function of temperature alone. Two different types of batch
reaction problems can be identified: constant and variable density. Ffor a
variable density problem, the pressure-versus-time profile is given and the
0DE's for temperature and density take the form (ref. 2)
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where p 1is the absolute pressure and vy, A, B, and D are given by
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In these equations h4 and Cp,1 are the molar specific enthalpy and
constant-pressure molar specific heat, respectively, of species 1, cp the
mixture specific heat, vy the mixture specific heat ratio, My the mixture
mean molar mass, and Q the heat loss rate per unit mass of mixture. The
thermodynamic properties hy and cp 4 are functions of temperature

alone and are computed by using polynomial equations (ref. 2). A can be
described as a species production function, and B and D are enthalpy
production and loss functions, respectively.

For constant density problems the temperature ODE becomes (ref. 2)

dT A
a“t“=7|:(Y—1)A- B-YD] (16)
and the pressure is obtained from the ideal gas law
P = pRT/My (17

The problem is to determine the thermochemical variables at the end of a
prescribed time interval, given the initial conditions and the chemical reac-
tion mechanism.

The use of classical methods such as the explicit Runge-Kutta and Adams
methods to solve the ODE's arising in combustion chemistry results in prohibi-
tive amounts of computer time. This is due to the extremely small steplengths
required by these methods due to the "stiffness" exhibited by the ODE's
(refs. 1, 4, and 5). The phenomenon of stiffness in chemical kinetic rate
equations was first recognized by Curtiss and Hirschfelder (ref. 6) who devel-
oped a simple backward differentiation method for handling such equations.
Since then, many approaches have been proposed for stiff ODE's in general
(refs. 7 to 12), and chemical kinetic rate equations in particular (refs. 1,
2, and 10 to 20). In several recent publiications (refs. 1, 5, 21, and 22) the
accuracy and efficiency of many techniques for the solution of stiff ODE's
arising in combustion chemistry have been examined. These studies showed that
the packaged code LSODE (ref. 23) is at present the most efficient and accurate
algorithm for batch combustion chemistry problems. This code has therefore
been adopted in the present work.

In addition to solving the ODE's for the thermochemical variables, it is
often necessary to know how sensitive the solution is to the initial conditions
and the chemical reaction mechanism parameters. Such a need arises in the
development of reaction mechanisms from experimental data (ref. 24). The rate
constants are often not well known and in general, the experimental data are
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not sufficiently detatled to accurately estimate the rate constant parameters.
Sensitivity analysis helps to determine the effects of uncertainties in the
rate constant parameters and the initial conditions on the solution, and to
identify which variables are sensitive to which parameters. The analysis helps
identify unimportant elementary reactions which can be discarded, thereby sim-
plifying the mechanism and hence the problem. At the same time, reactions that
need additional experimental study can be identified. Sensitivity analysis
helps also in the understanding of complex reaction mechanisms by showing which
parts of the mechanism are important for a given problem.

Another motivation for sensitivity analysis is the increased interest in
the numerical simulation of multidimensional chemically reacting flows. The
coupling of realistic chemical reaction mechanisms with multidimensional flow
calculations results in prohibitive amounts of computer time. Sensitivity
analysis can help reduce the reaction mechanism by identifying those reactions
that are important in computing the variables of interest.

The simplest method for estimating the effect of uncertainties in any
parameter is to run the simulation program with two different values of the
parameter. Although such a "brute force" method has been used successfully
(refs. 25 and 26), it can become very expensive when the number of parameters
is large. Many methods (refs. 27 to 39) have been proposed for a more elegant
and less expensive sensitivity analysis. The commonly used methods include the
direct method (DM) (ref. 27), the Fourier amplitude sensitivity test (FAST)
method (ref. 28), the Green's function method (GFM) (refs. 29 and 30) and its
variants (refs. 32 and 33), the analytically integrated Magnus modification of
the Green's function method (GFM/AIM) (refs. 30 and 34), and the decoupled
direct method (DDM) (refs. 37 to 39). For stiff problems of the type examined
in the present work, the DDM has shown greater efficiency and stability, with
equal or better accuracy than the GFM and the GFM/AIM methods (ref. 37).
Advantages of the DDM method over other methods are discussed by Dunker
(ref. 37).

Dunker (ref. 40) has recently developed a very efficient computer program
CHEMDDM which couples the DDM method for sensitivity analysis with the code
LSODE for solution of the model equations. However, the code is restricted to
constant density and constant temperature problems. This restriction to con-
stant temperature problems appears to be a common feature among all sensitivity
codes developed to date. However, combustion kinetics is characterized by a
narrow region of rapidly varying temperature. There is therefore a need to
incorporate sensitivity computations into a general kinetics code for noniso-
thermal problems. In the present work, the ODM method developed by Dunker
(refs. 37 and 40) is extended to calculate the first order sensitivity coeffi-
clents 3yj3/da, where y43 1s the ith thermochemical variable and o« 15 a
parameter of interest (either a rate constant parameter or an initial value),
for combustion (j.e., nonisothermal) kinetic rate equations.

DECOUPLED DIRECT METHOD

The ODE's for batch combustion chemistry presented in the previous section
can be generalized as
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where y 1s the solution vector with NS + 2 components (o4;1=1,NS, T, p)
and A, n, and E are constant vectors (containing the rate constant param-
eters, eq. 6), each of which has NR components.

At present, the most efficient method for solving eq. (18) is the backward
difference formula (BDF) included in the packaged code LSODE (ref. 1). This
variable-step, variable-order method computes approximations Y, [= Y(tp)]
to the exact solution y(tp) using linear multistep formulas of the type

qn
Xn = Q.Eﬂ "‘gxn-g + hnBOXH (19)

where hp (= ty - th_7) ¥s the stepsize, q, 1s the order of the numerical
approximation, Yn[= f(Yn,....)] is the approximation of the exact derivative
y(tp){= f(y(tp),....)], and the a's and By are coefficients associated with
the order qp.

A variety of iteration techniques i1s included in {.SODE to solve
equation (19). For combustion kinetics probiems the modified Newton iteration
procedure is the most efficient (ref. 1) and is given by

q
(me1)  (m) 3 . (m)
(T - hnBOJ) (,Y,n - -Y~n ) = Qg] aQ.'Y‘n—Q, + hnBO'Y—n _ lr('m) (20)

where 1 1is the identity matrix, J the Jacobian matrix with element

J1j = aYi/an’ the superscripts (m) and (m+1) denote the iteration numbers,

and igm) = f(Y am),....). For each solution step the code automatically

selects the stepsize and order to minimize the computational work while keeping
the estimated local error within a user-specified error tolerance.

The difference equatign for the first-order sensitivity coefficient
S = S,(t ) = (3a¥/an,) where 1, is an initial value or a rate constant
P I R 3't, 3
parameter, can be obtained by differentiating equation (19) with respect to
ns. The difference equation can also be derived by first differentiating
equation (18) with respect to nj and then applying the BDF to the resulting
equation. This gives

L

n Y
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where aY¥,/anj accounts for any explicit dependence of Y, on nj-
When ¢ s an initial value this term vanishes, and when n is a rate
constant parameter, it can be obtained from equation (18). The initial value



of Sy is the jth column of the identity matrix if n is the jth element of
Yo- ?f. however, nj s a rate constant parameter, §32t = 0) is equal to the
null vector.

Equations (20) and (21) show the similarity between the model and sensi-
tivity equations. The DDM method exploits this similarity by alternating the
solution of equation (19) with that of equation (21). More specifically, the
solution procedure 1s as follows. Ffor any step the solution Y s advanced
from tp_7 to t, using a standard predictor and the corrector formula
equation (20). The solution Y, at the new time step is then used in equa-
tion (21) to update the sensitivity coefficients. The latter process does not
require either a predictor or an iterative procedure. 1In solving equation (21)
for the sensitivity coefficients the method uses exactly the same stepsize and
order as those used for equation (19). This implies that the error control in
the solution of equation (21) is determined by the error control in the solu-
tion of equation (19). As discussed in Dunker (ref. 37) the sensitivity coef-
ficients calculated from equation (21) are the exact sensitivity of Y with
respect to nyo apart from computer roundoff errors.

At each solution step, equation (21) must be solved as many times as the
number of parameters with respect to which the solution sensitivity is
required. However, since the matrix (I - h,B8,J) is independent of the sensi-
tivity solutions, it has to be LuU-decomposed only once, irrespective of the
number of sensitivity parameters. Hence, although the calculation of the sen-
sitivities with respect to the first parameter may require considerable work
to form the iteration matrix, perform its LU-decomposition, and solve
equation (21), the evaluation of the sensitivity coefficients with respect to
the second and subsequent parameters is significantly less expensive.

To reduce the computational work associated with the calculation and
decomposition of the iteration matrix (I - hpByJd) in equation (20), this
matrix is not updated at every iteration in LLSODE. For additional savings it
is updated only when the solution to equation (20) does not converge. Hence
the iteration matrix is only accurate enough for the iterations to converge and
the same matrix may be used over many steps. However, to maintain accuracy in
the computed Sj, the matrix in equation (21) must be recomputed at every
time step unless J changes slowly (refs. 37 and 39). The updating of this
matrix at every time step obviates the need to iterate for S4 and specify
separate error tolerances for the sensitivity calculations. otice that
because the same Jacobian matrix J 1s required in both equations (20)
and (21) no additional programming is required by the DDM method for either the
calculation of J or the LU-decomposition of the matrix (I - hpBgJd) in
equation (21).

ILLUSTRATIVE EXAMPLES

The DDM method of sensitivity analysis together with a modified version
of the packaged code LSODE (ref. 23) were incorporated into an existing general
chemical kinetics computer code GCKP84 (ref. 2). The sensitivity subroutines
were adapted from the code CHEMDOM (ref. 40). The new general kinetics code
GCKP87 (ref. 41) has been designed to treat a variety of reaction problems
including sensitivity analysis of batch combustion kinetics equations. At the
user's option the code computes the first order sensitivity coefficients
dyj/anjy where y4 1s any dependent variable, the species mole numbers,
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temperature, density, and pressure. The n3's are the input parameter

values. This includes the initial values of the species mole numbers, tempera-
ture and density, as well as the values of the rate constani parameters AJ,
ny, and E3y for the jth reaction (eq. 6). The code does not compute the
coefficien ay4/akj used in the constant temperature computations of other
investigators, because the rate constant k 1s a function of the temperature
(eq. 6). The code GCKPB7 also computes the sensitivity coefficients of the
temporal derivatives of the dependent variables ay1/anj for all the y4's

and nj's defined above.

A preliminary version of GCKP87 has been tested extensively on a varijety
of problems to ensure its accuracy and efficiency (ref. 42). To test the sen-
sitivity computations many problems have been examined (ref. 41), three of
which are presented below for illustrative purposes. All calculations were
performed in double precision on the NASA Lewis Research Center's IBM 370/3033
computer.

Test problem 1, taken from Dunker (ref. 37), describes the pyrolysis of
ethane at a temperature of 923 K. This constant temperature, constant density
problem consists of 5 irreversible reactions among 7 species. The reaction
mechanism and rate constants (at T = 923 K) are given in table I, together with
the initial conditions. Although the mechanism is quite small this problem is
very stiff and other direct methods have produced inaccurate results (ref. 37).
Because this is a constant temperature problem the rate constants kj (eq. 6)
are time invariant. Therefore 1t is only necessary to compute sensitivity
coefficients with respect to kj itself and not with respect to the individ-
ual rate constant parameters Aj, nj, and Ej. This problem was selected
as a test for the modifications made to the sensitivity routines adapted from
CHEMDDM (ref. 40) to ensure that Dunker's results (ref. 37) could be
duplicated.

Normalized sensitivity coefficients

l_(iic_,‘ i é)lnor1

o, akj a]nkj
calculated at two different times by the codes GCKP87 and CHEMDDM are given in
table II, together with the results obtained by Dunker (ref. 37). A1l sensi-
tivity coefficients presented in this table are with respect to the rate con-
stant kj. To generate these coefficients with the code GCKP87, sensitivity
with respect to the preexponential constant (Aj 1in eq. 6) is specified. For
constant temperature problems the normaiized sensitivity coefficients with
respect to Ay are identically equal to the normalized sensitivity coeffi-
cients with respect to kj. To enable accuracy and efficiency comparisons,
both GCKP87 and CHEMDDM were run with the same values for the local error
tolerance parameters required by LSODE. The values specified for these param-
eters were the same as those used by Dunker (ref. 37): 10-® for the local
relative error tolerance (RTOL) and 10-8 for the local absolute error toler-
ance (ATOL) for all variables.

The agreement between the two codes is excellent at both 1 and 20 sec,
thereby confirming the reliability of the code GCKP87. Comparisons of the com-
putational work required by the two codes showed GCKP87 to be significantly
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more efficient than CHEMDDM. Ffor 2 output stations (1 and 20 sec), GCKP87
required 95 steps with 138 functional and 21 Jacobian matrix evaluations to
complete the probliem, whereas CHEMODM required 140 steps with 193 functional
and 28 Jacobian matrix evaluations. To solve for the composition and sensitiv-
ity coefficients of all species with respect to all initial values and all rate
constants, GCKP87 required approximately 0.65 sec CPU time, whereas CHEMDDM
required approximately 1.4 sec. The given execution times do not inciude the
time required for code initialization, preprocessing of the thermochemical
data, and input and output. When the number of output stations was increased
to 5 (10-3, 10-2, 1, 10, and 20 sec), the difference in computational work
required by the codes was even more marked. GCKPB7 required 87 steps, 116
functional and 19 Jacobian matrix evaluations, and 0.61 sec CPU time. CHEMDOM,
however, required 153 steps, 207 functional and 27 Jacobian evaluations, and
1.5 sec CPU time. This variation of the computational work required by LSODE
with the specified value for the first output station has been observed previ-
ously (ref. 5). It s caused by the procedure used in LSODE to calculate the
first stepsize to be attempted for the problem.

The second example, taken from Hwang (ref. 32), is also a constant temper-
ature problem, but it permits a comparison with the exact solution. It is a
simple first-order reversible reaction

op(0) = 1000, og(0) =1
ki = 1000, k_y =1

which describes a rapidly changing system. The solution to this problem is

ap(t) = [k_.l(oA(O) ¢ og(0)) + (Kyop(0) - K_1o5(0) e-(k]+k")t] (K + %)

og(t) = op(0) + og(0) - op(t)

Sensitivity coefficients were generated at the same output stations as
Hwang (ref. 32) and the resuits are presented in tables III and IV, together
with the exact solutions. The tolerances used for this probliem were
RTOL = 10-6 and ATOL = 10-8 to be consistent with Hwang (ref. 32), whose
results were generated with RTOL = 10-6. Table III gives the sensitivity
coefficients of op with respect to the initial values. In table IV the
sensitivity coefficients with respect to the rate constants are presented,
along with Hwang's results obtained with a scaled Green's function method
(SGFM) (ref. 32). These tables show the excellent agreement between the GCKP87
and exact results. Although the GCKP87 and SGFM results agree well, there are
some discrepancies in the SGFM results at early times. 1In particular, the SGFM
sensitivity coefficients with respect to k_j at 1.5x10-% and 1x10-3 sec
are noticeably inaccurate in comparison to the GCKP87 results. GCKPB7 was also
significantly more efficient than the SGFM method. To solve for the composi-
tion and the sensitivity coefficients of both species with respect to both ini-
tial values and both rate constants GCKP87 required approximately 0.3 sec on
the IBM 370/3033 computer. In contrast, Hwang (ref. 31) states that the SGFM
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method required approximately 8 sec on a CDOC-CYBER-172 computer. GCKP87 is
seen to be significantly faster than the SGFM method even after accounting for
the relative slowness of this CDC computer. Hwang (ref. 32) also attempted
this problem with a direct method (DM) and gives a CPU time of approximately

1 sec, which is significantly longer than that required by GCKP87. Since no
DM results are given in (ref. 32), an accuracy comparison with GCKP87 fis
precluded.

The last example is also a simple problem for which an analytical solution

s known. It is, however, a nonconstant temperature problem involving a first-
order irreversible reaction

k

it

A TN exp(-E/RT)
A:],n=],£=0
opa(0) = 1, op(0) = 0, T(0) = 1000 K

To solve the problem analytically the following simplifying assumptions were
made: (1) constant pressure, adiabatic reaction, and (2) constant and equal
specific heats (cp) for species A and B. The solution is

cA(t) = CoA(O)e—ACt/ [C - koA(0)<1 - e—ACt>]

oB(t) = cA(O) + oB(O) - oA(t)

T(t) = T(0) + ,x[aA(O) - aA(t)]

where

A = Qc/p[cA(O) + aB(O)]

C = T(0) + koA(O)

where Q. 1s the heat of combustion which dictates the temperature rise due
to the reaction.

The analytical and computed sensitivity coefficients with respect to A
at various times are given in table V. This solution was obtained with values
of Q. = 5000 cal/mol and Cp = 5 cal/mol K which give a 1000 K temperature
rise when reactant A 1s completely converted to product B. Also presented in
this table is the mixture temperature which gives an indication of the extent
of the reaction. The agreement between the analytical and the computed results
is excellent at all levels of reactedness. In table VI the sensitivity coeffi-
cients of the time derivative of op are presented to 1llustrate the capa-
bility of GCKPB87 to compute these quantities. The analytical solutions were
obtained by differentiating the ODE for op with respect to the rate con-
stant parameters. The solution with respect to A 1is exact, but those with
respect to n and E were obtained by using the computed values for 3op/dn,




aT/an, dop/3k, and a3T1/3k, because these quantities cannot be obtained analy-
tically. 1the normalization procedure used for A cannot be used for n and

£ because these parameters can have zero values. The normalization parameters
given in table VI (1/In T and -RT for n and E, respectively) produce a

1 percent change in k. The normalized sensitivity coefficients with respect
to n or E can therefore be interpreted as the percent change in o5 due

to the change in the parameter n or E that produces a 1 percent change in
k. This 1s analogous to the sensitivity coefficient dInsp/ainA which
represents the percent change in op due to a 1 percent change in A. For

a constant temperature problem the three normalized sensitivity coefficients
are identically equal to one another. Again, the agreement between the analy-
tical results and those generated by GCKP8/ is excellent, i1liustrating the
accuracy of this code for sensitivity analysis of nonisothermal combustion
kinetic rate equations. Although this problem is simple, selected because the
analytical solution exists, GCKP87 has been used successfully on a realistic
combustion kinetics problem involving 110 reactions among 36 species (ref. 43).

CONCLUSIONS

An efficient decoupled direct method for calculating the first order sen-
sitivity coefficients of nonisothermal combustion kinetic rate equations has
been developed. Sensitivity coefficients of all thermochemical variables and
their temporal derivatives with respect to any combination cf initial values
of dependent variables and the rate constant parameters of the chemical reac-
tions can be computed. The method was i1l1iustrated by application to both con-
stant and varying temperature problems. The computed coefficients agreed well
with both analytical solutions and those obtained with other codes and solution
methods. The efficiency of the described method compared very favorably with
that of other sensitivity analysis techniques.
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TABLE T. -

REACTION MECHANLISM FOR

PROBLEM 12

Reaction Rate
Constant,

kjb
(1) C,He = CHy + CH 1.14 (-2)
(2) CH3 + C2H6 - CH4 + C2H5 1.19 (6)
(3) CZH3 > C2H4 + H 1.57 (3)
(4) H + Cz”s > H2 + C2H5 9.72 (8)
(5) H +H->H 6.99 (13)

aSee reference 37.

The initial

concen-

tration of CyHg is 5.951 (-6) mol cm-3;
all other initial concentrations are

zZero.

bunits are mol, ¢m, s, and the tempera-

ture 1s 923 K.
are powers of 10.

Numbers in parentheses

14

TABLE TI. - SENSIVIVITY COEFFICLENTS FOR EXAMPLE 1
Species | 3lnoj/8Inky at 1.0 sec| alnoy/alnky at 20.0 sec
[37]} GCKP87 | CHEMDOM | [37] GCKP87 {CHEMDDM
C2H6 -0.044 | -0.043 | -0.042 | -0.820| -0.800] -0.789
CH3 1.000 | 1.000 | 71.000 1.000| 1.000( 1.000
CH4 .976 9171 .911 .b43 .650 .655
C2H5 .662 .662 .662 -.210 ~.191 -.181
CZH4 .681 .680 .679 .323 .329 .332
H2 .602 .602 .601 .221 .221 .230
H .478 .418 .419 .090 .100 .106
TABLE TIL. - SENSITIVITY COEFtICIENTS WIIH RESPECT
TO INITIAL VALUES FOR EXAMPLE 2
[Numbers in parentheses are powers of 10.]
t, dop/dop(0) dop/3ag(0)
sec
EXACT GCKP87 EXACT GCKP87
1.5x10~4 0.861 0.861 1.39(-4) | 1.39(-4)
1073 .368 .368 6.32(-4) | 6.32(-4)
1072 1.08(-3) | 1.04(-3) | 9.99(-4) | 9.99(- 4)
1.5x10_2 9.99(-4) | 9.99(-4) | 9.99(-4) | 9.99(-4)
2.0x107%| 9.99(-4) | 9.99(-4) | 9.99(-4) | 9.99(-4)




TABLE

Iv.

CONSTANTS FOR EXAMPLE o

- SENSIVIVITY COEHFICIENTS WITH RESPECT TO RATE

[Numbers in parentheses are powers of 10.]

t, 31nop/alnky 3lnop/alnk_
sec
EXACT | GCKP87 [32] EXACT GCKP87_ (32]
1.5x10’4 -0.150 | -0.150 | -0.148 | 1.20(-5) ] 1.20(-5) | 1.35(-5)
1073 -.999 | -.999 | -1.03 | 7.19(-4) | 7.19(-4) | 8.10(-4)
10—2 -1.390 | -1.386 | -1.37 .956 .956 .958
1.5x1072| -1.000 | -1.003 | -1.00 | .999 .999 .999
2.0x10-2 -.999 ~-.999 -.999 .999 .999 .999
TABLE V. - SENSITIVITY COEFFICIENTS WITH RESPECT TO RATE PARAMEIER A FOR
EXAMPLE 3
[Numbers in parentheses are powers of 10.]
t, T, 3lnog/alnA 3lnog/alnA 3InT/alnA
sec K
EXACT GCKP87 EXACT GCKP87 EXACT GCKP87
10-6 | 1001 -1.001(-3) -1.001(-3) | 1.000 1.000 9.990(-4) { 9.990( 4)
10-5 11010 -1.010(-2) -1.010(-2) | 1.000 1.000 9.900(-3) | 9.899(-3)
10-4 11100 -.110 -.110 .993 .992 9.003(-2) | 8.978(-2)
10-3 | 1761 ~1.762 -1.755 .551 .550 .238 .238
10~2 | 2000 |-20.00 -20.09 8.244(-8) | 8.150(-8) | 4.122(-8) 4.075(-8)

TABLE VI. - SENSITIVITY COEFFICLENTS OF

op FOR EXAMPLE 3

t, dlnop/31nA (31nop/3n)/1InT -RT(2a1nop/a3E)
sec = =

EXACT GCKPB7 | EXAC1 | GCKP8Y EXACI GCKP87

10-6 1.000 1.000 1.000 1.000 1.000 1.000
10-5 1.000 1.000 1.000 1.000 1.000 .996
10-4 .980 .980 .980 .980 .979 .979
10-3 -.523 ~.530 -.413 ~.482 ~.912 ~.921
L_10-2 -19.00 | -19.06 | -18.98 | -18.95 |[-20.08 | -20.05
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